Chebyshev polynomial expansion of two-dimensional Landau–Fermi liquid parameters
نویسندگان
چکیده
منابع مشابه
Two Dimensional Zonoids and Chebyshev Measures
We give an alternative proof to the well known fact that each convex compact centrally symmetric subset of R2 containing the origin is a zonoid, i.e., the range of a two dimensional vector measure, and we prove that a two dimensional zonoid whose boundary contains the origin is strictly convex if and only if it is the range of a Chebyshev measure. We give a condition under which a two dimension...
متن کاملChebyshev polynomial Kalman filter
A novel Gaussian state estimator named Chebyshev Polynomial Kalman Filter is proposed that exploits the exact and closed-form calculation of posterior moments for polynomial nonlinearities. An arbitrary nonlinear system is at first approximated via a Chebyshev polynomial series. By exploiting special properties of the Chebyshev polynomials, exact expressions for mean and variance are then provi...
متن کاملConstrained Jacobi Polynomial and Constrained Chebyshev Polynomial
In this paper, we present the constrained Jacobi polynomial which is equal to the constrained Chebyshev polynomial up to constant multiplication. For degree n = 4, 5, we find the constrained Jacobi polynomial, and for n ≥ 6, we present the normalized constrained Jacobi polynomial which is similar to the constrained Chebyshev polynomial.
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملGeneralizations of Chebyshev polynomials and Polynomial Mappings
In this paper we show how polynomial mappings of degree K from a union of disjoint intervals onto [−1, 1] generate a countable number of special cases of generalizations of Chebyshev polynomials. We also derive a new expression for these generalized Chebyshev polynomials for any genus g, from which the coefficients of xn can be found explicitly in terms of the branch points and the recurrence c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2020
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab87b9